In many fossil power plants operating today, there is insufficient means to assure the proper balancing of the secondary airflows between the individual burners of wall-fired units in addition there is a problem of dust deposition on the floor. This mismatch leads to decreased boiler efficiency and increased emissions. In this study, a Computational Fluid Dynamics (CFD) modeling of a fossil power plant wind box scale model is performed using the commercial software CFX5.6. The model solves the three dimensional Reynolds averaged Navier-Stokes equations with the K-epsilon turbulence model. The CFD results are validated by the experimental data taken from a 1/8th scale model of a wall fired fossil unit. Simulations under various flow conditions are obtained to identify the optimum design in terms of the equalization of the secondary airflow through the burners.

This content is only available via PDF.
You do not currently have access to this content.