The Micro Loop Heat Pipe (LHP) is a two phase device that may be used to cool electronics, solar collectors and other devices in space applications. A LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference developed between the evaporator and condenser and capillary forces developed inside its wicked evaporator to circulate a working fluid through a closed loop. While previous experiments have shown reduction in chip temperature, maximum heat flux was less than theoretically predicted. This paper addresses the main problem with the past designs of top cap which has been the conduction of heat from the heat source to the primary wick. The new top cap design provides conduction pathways which enables the uniform distribution of heat to the wick. The provision of conduction pathways in the top cap increases the pressure losses and decreases the temperature drop. The feasible competitive designs of the top cap with conduction pathways from the fabrication point of view were discussed in detail. Calculation of pressure drop and temperature drop is essential for the determination of optimal solutions of the top cap. Approximate pressure drop was calculated for the top cap designs using simple 2-D microchannel principles. Finite element modeling was performed to determine the temperature drop in the conduction pathways. The conditions used for arriving at the optimal design solutions are discussed. A trapezoidal slot top cap design was chosen for fabrication as it was relatively easy to fabricate with available MEMS fabrication technologies. The exact pressure drop calculation was performed on the fabricated top cap using commercial flow solver FLUENT 6.1 with appropriate boundary conditions. The temperature drop calculation was performed by finite element modeling in ANSYS 6.1. Obtained values of pressure drop and temperature drop for fabricated trapezoidal slot top cap was found to be within the optimal limits.

This content is only available via PDF.
You do not currently have access to this content.