Dynamic characteristics of overhung and/or moving components play a pivotal role in determining the overall performance and reliability of microsystems (MEMS). In addition to the structural dynamics of the components, the response is very sensitive to multi-physics phenomena such as electrostatics, gas damping, and friction. Therefore, the ability to experimentally analyze linear and nonlinear dynamics of microsystems under varying environmental conditions is very important. This paper describes a facility for experimental investigation and validation of linear and nonlinear dynamic response of microsystems under varying environmental conditions. A detailed account of the facility components and software developed for excitation and data collection is given. Experimental results and discussion for various MEMS structures are included to illustrate the effectiveness of the experimental facility.

This content is only available via PDF.
You do not currently have access to this content.