This paper presents a new offsetting approach for tool path generation in three-axis sculptured surface machining. The approach generates tool paths with scallop, curvature, and force characteristics which make them suitable for high speed machining. An ellipse in the parametric space is used to approximate the intersection between the ball-end mill and the scallop surface for any cutter contact point on the surface. The envelope formed by these swept ellipses of varying dimension and orientation creates a constant scallop curve which is used to generate offset paths. The offset is developed incrementally, utilizing post-processing techniques to eliminate high-curvature regions in the trajectory. The offsetting approach can generate continuous spiraling trajectories which offer the benefit of minimal tool retractions. Results are shown for spiraling paths generated from both convex and non-convex boundaries.

This content is only available via PDF.
You do not currently have access to this content.