Different experimental techniques and 3D FEM simulations are employed to characterize and analyze the three dimensional plastic deformation and residual strain/stress distribution for single crystal Aluminum under microscale laser shock peening assuming finite geometry. Single pulse shock peening at individual locations was studied. X-ray micro-diffraction techniques based on a synchrotron light source affords micron scale spatial resolution and is used to measure the residual stress spatial distribution along different crystalline directions on the shocked surface. Crystal lattice rotation due to plastic deformation is also measured with electron backscatter diffraction (EBSD). The result is experimentally quantified and compared with the simulation result obtained from FEM analysis. The influence of the finite size effect, crystalline orientation are investigated using single crystal plasticity in FEM analysis. The result of the 3D simulations of a single shock peened indentation are compared with the FEM results for a shocked line under 2D plain strain deformation assumption. The prediction of overall character of the deformation and lattice rotation fields in three dimensions will lay the ground work for practical application of μLSP.

This content is only available via PDF.
You do not currently have access to this content.