Impact-sliding fretting wear is a complex phenomenon due to the random nature of the flow-induced vibrations, and the self-induced tribological changes. Available models, which relate wear losses to the process variables, are empirical in nature and bear no physical similarity to the actual mathematical and physical attributes of the wear process. A generalized model is developed in the present work to mathematically describe the fretting wear process under various modes of motion, namely, impact, sliding and oscillatory. This model, which is based on the findings from the fracture mechanics analysis of the crack initiation and propagation processes, takes into consideration the simultaneous action of both the surface adhesion and subsurface fatigue mechanisms. The model also accounts for the micro-, and macro- contact configuration of the tube-support system. The closed form solution requires the calibration of single parameter, using a limited number of experiments, to account for the effect of environment and the support material. The model was validated using experimental data that are generated for Inconel 600 and Incology 800 tube materials at room and high temperature environment, and for different types of motion. The results showed that model can accurately predict wear losses within a factor of < ±3. This narrow range presents better than an order of magnitude improvement over the current state-of-the-art models.

This content is only available via PDF.
You do not currently have access to this content.