Local heat transfer from a flat plate to a pair of circular air impinging jets is investigated numerically. A pair of impinging jets from fully-developed pipe flows are used for the numerical simulations. The Reynolds Averaged Navier-Stokes equations(RANS) and energy equation are solved for the three dimensional flow. Eddy-viscocity based turbulence models, RNG k-epsilon and V2F models, are used. Hybrid meshes are used for the three dimensional flows and mesh independent solutions are obtained. The flow Reynolds number, which is based on the jet diameter, is kept at 23,000. In the analysis, local heat transfer coefficients are obtained for the jet-to-plate distance, L/D, ranging from 2 to 10 and the jet-to-jet spacing, S/D, in the range of 1.75 to 7.0. Both local and average heat transfer coefficients are evaluated and compared with available experimental data under same flow conditions. The effect of using different turbulence models in the numerical analysis is evaluated and the selection of proper turbulence models under such a flow condition is suggested.

This content is only available via PDF.
You do not currently have access to this content.