Recent compaction and miniaturization of electronic equipment has caused a dramatic increase in the amount of heat dissipated within data centers housing compute, network, and storage systems. The efficient thermal management of these systems is complicated by the intricate interdependence among the various components of the thermal architecture, including the heat-dissipating computer racks, the Computer Room Air-Conditioning (CRAC) units, and the physical airspace within the room. To account for this interdependence, an approach based on the thermodynamic metric of exergy has been proposed, which allows for prediction of an optimal CRAC operating point that corresponds to the point of minimal irreversibility for the overall system. To validate the formulated theory, predictions from the model have been compared with actual data center power consumption measurements. Initial comparisons indicate good agreement, suggesting that the proposed theory has great applicability for efficient data center thermal management.

This content is only available via PDF.
You do not currently have access to this content.