The flow inside a horizontal annulus due to the inner cylinder rotation is studied. The bottom of the annular space is partially blocked by a plate parallel to the axis of rotation, thereby destroying the circumferential symmetry of the annular space geometry. This flow configuration the drilling process of horizontal petroleum wells, where a bed of cuttings is deposited at the bottom part of the annulus. The velocity field for this flow was obtained both numerically and experimentally. In the numerical work, the equations which govern the three-dimensional, laminar flow of both Newtonian and power-law liquids were solved via a finite-volume technique. In the experimental research, the instantaneous and time-averaged flow fields over two-dimensional meridional sections of the annular space were measured employing the particle image velocimetry (PIV) technique. Attention was focused on the determination of the onset of secondary flow in the form of distorted Taylor vortices. The results showed that the critical rotational Reynolds number is directly influenced by the degree of obstruction of the flow. The influence of the obstruction is more perceptible in Newtonian than non-Newtonian fluids. The larger is the obstruction, the larger is the critical Taylor number. The height of the obstruction also controls the width of the vortices. The calculated steady state axial velocity profiles agreed well with the corresponding measurements. Transition values of the rotational Reynolds number are also well predicted by the computations. However, the measured and predicted values for the vortex size do not agree as well. Transverse flow maps revealed a complex interaction between the Taylor vortices and the zones of recirculating flow, for moderate to high degrees of flow obstruction.

This content is only available via PDF.
You do not currently have access to this content.