In modern microelectronics, where extreme miniaturization has led to feature sizes in the sub-micron and nanoscale range, Fourier diffusion has been found to be inadequate for the prediction of heat conduction. Over the past decade, the phonon Boltzmann transport equation (BTE) in the relaxation time approximation has been employed to make thermal predictions in dielectrics and semiconductors at micron and nanoscales. This paper presents a review of the BTE-based solution methods widely employed in the literature. Particular attention is given to the problem of self-heating (hotspot) in sub-micron transistors. First, the solution approaches based on the gray formulation of the BTE are presented. In this class of solution methods, phonons are characterized by one single group velocity and relaxation time. Phonon dispersion is not accounted for in any detail. This is the most widely employed approach in the literature. The semi-gray BTE approach, moments of the Boltzmann equation, the lattice Boltzmann approach, and the ballistic-diffusive approximation are presented. Models which incorporate greater details of phonon dispersion are also discussed. This includes a full phonon dispersion model developed recently by the authors. This full phonon dispersion model satisfies energy conservation, incorporates the different phonon modes, and well as the interactions between the different modes, and accounts for the frequency dependence for both the phonon group velocity and relaxation times. Results which illustrate the differences between some of these models reveal the importance of developing models that incorporate substantial details of phonon physics.
Skip Nav Destination
ASME 2004 International Mechanical Engineering Congress and Exposition
November 13–19, 2004
Anaheim, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
0-7918-4707-1
PROCEEDINGS PAPER
Modeling Nanoscale Thermal Transport via the Boltzmann Transport Equation
Cristina H. Amon,
Cristina H. Amon
Carnegie Mellon University
Search for other works by this author on:
Sreekant V. J. Narumanchi
Sreekant V. J. Narumanchi
Carnegie Mellon University
Search for other works by this author on:
Cristina H. Amon
Carnegie Mellon University
Jayathi Y. Murthy
Purdue University
Sreekant V. J. Narumanchi
Carnegie Mellon University
Paper No:
IMECE2004-62508, pp. 93-103; 11 pages
Published Online:
March 24, 2008
Citation
Amon, CH, Murthy, JY, & Narumanchi, SVJ. "Modeling Nanoscale Thermal Transport via the Boltzmann Transport Equation." Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology. Anaheim, California, USA. November 13–19, 2004. pp. 93-103. ASME. https://doi.org/10.1115/IMECE2004-62508
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
J. Heat Transfer (July,2005)
Thermal Phenomena in Nanoscale Transistors
J. Electron. Packag (June,2006)
Modeling of Polarization-Specific Phonon Transmission Through Interfaces
J. Heat Transfer (November,2011)
Related Chapters
Out-Of-Order Matrix Processor: Implementation and Performance Evaluation
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)
Modeling Polarization Curves and Impedance Spectra for Simple Electrode Systems
Computer Modeling in Corrosion
Effects of Metallic Plate and Objects on Performance of Inverted F Antenna for ISM Band Application
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)