The atomic force microscope (AFM) is a newly developed high resolution microscopy technique which is capable of measuring of nano-scale pattern, nanofabrication, data storage and material analysis in the mechanical, chemical and biological fields. The nano-probe is the most critical component of the AFM, and it consists of three parts: a sharp tip, a cantilever beam and a supporting base. The tip must be sharp enough to measure the surface topography with a high resolution. The cantilever beam must have the appropriate spring constant and resonant frequency for the type of operation selected. The supporting base must be of a suitable size for loading into the probe head. Therefore, depending on the various applications, the nano-probe structures used in the AFM should must meet the following criteria: (1) good tip sharpness with a small radius apex, (2) small spring constant and (3) high resonant frequency. This research will propose the design rule for three types of nano-probes, including the rectangular-shaped, V-shaped and chamfer V-shaped nano-probe for the AFM using the finite element method. The fundamental mechanical parameters of a nano-probe for an AFM are its spring constant, its resonant frequency and its physical dimensions. Research of the relevant literatures indicates that numerous researchers only consider the small deflection theory when analyzing the above-mentioned physical properties of the nano-probe. However, the small deflection theory is suitable only when the behavior of nonlinear geometry has not taken place in the structure. But, the applications of the nano-probe are increasing at a rapid rate, and the geometric dimensions or physical properties of nano-probe are changing from the traditional applications. The measuring of the red corpuscle requires a small size probe, but the ultra-high resolution topography is demanding an ever increasing applied force. The phenomenon of nonlinear geometry is occurring in the structure at present, and as a result the small deflection theory is no longer suitable for analyzing the nano-probe. This research introduces the large deflection theory in the finite element method (FEM) to investigate the geometrical size and the physical properties of the nano-probe.
Skip Nav Destination
ASME 2004 International Mechanical Engineering Congress and Exposition
November 13–19, 2004
Anaheim, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
0-7918-4707-1
PROCEEDINGS PAPER
Design and Analysis of a Nano-Probe of the AFM Based on the Small/Large Deflection Theory
Wei-Chuan Liao,
Wei-Chuan Liao
National Tsing Hua University
Search for other works by this author on:
Kuo-Ning Chiang
Kuo-Ning Chiang
National Tsing Hua University
Search for other works by this author on:
Chun-Te Lin
National Tsing Hua University
Wei-Chuan Liao
National Tsing Hua University
Jen-Yi Chen
National Tsing Hua University
Hui-Chi Su
National Tsing Hua University
Kuo-Ning Chiang
National Tsing Hua University
Paper No:
IMECE2004-62427, pp. 337-344; 8 pages
Published Online:
March 24, 2008
Citation
Lin, C, Liao, W, Chen, J, Su, H, & Chiang, K. "Design and Analysis of a Nano-Probe of the AFM Based on the Small/Large Deflection Theory." Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology. Anaheim, California, USA. November 13–19, 2004. pp. 337-344. ASME. https://doi.org/10.1115/IMECE2004-62427
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Probe-Tip Induced Damage in Compliant Substrates
J. Manuf. Sci. Eng (June,2010)
Microscale and Nanoscale Thermal Characterization Techniques
J. Electron. Packag (December,2008)
Modeling Piezoresponse Force Microscopy for Low-Dimensional Material Characterization: Theory and Experiment
J. Dyn. Sys., Meas., Control (November,2009)
Related Chapters
Computer Aided Design of Tools, Dies, and Moulds (TDMs)
Computer Aided Design and Manufacturing
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Safety Analysis and Design of Fiscal Cash Register Data Storage System
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)