Wire-actuated robot manipulators are generally lighter than other manipulators as actuated wires are used instead of joint actuators. The inverse dynamic modeling of these manipulators is complicated by the existence of multiple kinematic constraints as well as redundancy in actuation. In wire-actuated parallel manipulators with a constraining linkage and in tendon-driven serial manipulators, wires are used to control the joints. In these manipulators, each wire can provide a torque/force on a link about/along its revolute/prismatic passive joint in one direction, as wires only act in tension. Using one wire for each link sometimes does not fully constrain the motion of the link about/along its passive joint. Therefore, a second wire is attached to some links in a “counterbalance” configuration; i.e., the second wire can provide a “complementary” torque/force in the opposite direction of the torque/force produced by the first wire on the link about/along its passive joint. Depending on the end effector trajectory and external force at each instant, one of the mentioned two wires provides the desired direction of torque/force and the other, “counteracting wire,” imposes a “counteracting” torque/force on the link about/along its passive joint. Using more actuators than degrees of freedom (DOF) in the manipulator causes redundancy in actuation, which means that for a unique end effector trajectory and external force, inverse dynamic results (actuator torques/forces) have infinite solutions within a null space of actuator torques/forces. Obtaining a unique result within the null space requires several considerations, such as avoiding negative tensions in wires and decreasing the actuator torques/forces. The purpose of this article is to find a methodology to limit the infinite inverse dynamic solutions to one while the negative wire tensions are avoided and actuator torques/forces are relatively decreased. As explained in this article, by reducing the counteracting wire tensions, other actuator torques/forces are decreased, because a portion of other actuator torques/forces neutralizes the tensions of counteracting wires. A methodology is developed to detect the counteracting wires in real-time and to present the corresponding tensions to a low positive value; i.e., the counteracting wires are “deactivated.” The proposed methodology can be implemented in the inverse dynamic modeling of wire-actuated parallel manipulators with a constraining linkage and tendon-driven serial manipulators via using the Lagrangian method. This methodology can be used to provide optimum actuator torques/forces and avoid negative tensions in actuated wires. The methodology is implemented in the inverse dynamic modeling of a 4-DOF wire-actuated manipulator where there is one degree of actuation redundancy. In the simulation results, the inverse dynamic model based on the proposed methodology is observed to be quite robust in terms of avoiding negative wire tensions by deactivating the right actuated wire.
Skip Nav Destination
ASME 2004 International Mechanical Engineering Congress and Exposition
November 13–19, 2004
Anaheim, California, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
0-7918-4706-3
PROCEEDINGS PAPER
Wire Deactivation Methodology for Inverse Dynamics of Wire-Actuated Redundant Manipulators Available to Purchase
Leila Notash
Leila Notash
Queen’s University
Search for other works by this author on:
Amin Kamalzadeh
Queen’s University
Leila Notash
Queen’s University
Paper No:
IMECE2004-61201, pp. 1211-1220; 10 pages
Published Online:
March 24, 2008
Citation
Kamalzadeh, A, & Notash, L. "Wire Deactivation Methodology for Inverse Dynamics of Wire-Actuated Redundant Manipulators." Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Parts A and B. Anaheim, California, USA. November 13–19, 2004. pp. 1211-1220. ASME. https://doi.org/10.1115/IMECE2004-61201
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Control of Redundant Mechanical Systems Under Equality and Inequality Constraints on Both Input and Constraint Forces
J. Comput. Nonlinear Dynam (July,2011)
Control of Macro-Micro Manipulators Revisited
J. Dyn. Sys., Meas., Control (December,2005)
Utilization of Manipulator Redundancy for Torque Reduction During Force Interaction
Letters Dyn. Sys. Control (April,2024)
Related Chapters
Pseudoinverse Method and Singularities Discussed
Robot Manipulator Redundancy Resolution
QP-Based Self-Motion Planning
Robot Manipulator Redundancy Resolution
Manipulability-Maximizing SMP Scheme
Robot Manipulator Redundancy Resolution