In this paper, we present a frequency-based trajectory planning approach that considers the variable dynamic bandwidth of any multibody system having different dynamic subsystems. This approach provides us with important motion planning methodology for a variety of robotic systems including land-based mobile robots, space robots, and underwater robots, where the vehicles have much slower response as compared to the manipulators. The proposed method has been improvised for an Autonomous Underwater Vehicle-Manipulator System (UVMS) which is a heterogeneous dynamic system having vehicle’s natural frequency much lower than that of the manipulator. This motion-planning algorithm not only considers the variability in dynamic bandwidth of such a complex system but also generates kinematically admissible as well as dynamically feasible reference trajectories. Additionally, the proposed algorithm exploits the inherent kinematic redundancy of the system and provides reference trajectories that accommodate several other important criteria such as thruster/actuator fault and saturation; it also minimizes hydrodynamic drag on the UVMS. Here, we have mainly compared the performance of two frequency-based decomposition approaches, namely: Partial Decomposition and Total Decomposition. The effectiveness of the proposed algorithm is verified with extensive computer simulations and the results are found quite promising.

This content is only available via PDF.
You do not currently have access to this content.