Simultaneous measurement of pressure and flow rate has been found to be helpful in evaluating the physiologic significance of obstructive coronary artery disease and in the diagnosis of microvascular disease. This experimental study seeks to find important pressure-flow relationship in an in-vitro model of significant coronary artery stenoses using a non-Newtonian liquid, similar to blood showing a shear thinning behavior, using significant stenotic in-vitro model (minimal area stenosis = 90%). The geometry for the stenotic model is based on data provided in an in vivo study by Wilson et al., (1988). For 90% area stenosis, the maximum recorded pressure drop for steady flow rate of 55, 79 and 89 are 14, ~24 and ~32 mmHg respectively. The maximum pressure drop at flow rate of 115 ml/min (the physiological limit) is 50.3 mmHg respectively. Using a power law curve fit, the maximum pressure drop (in mmHg) related with flow rate (in ml/min) provided a power law index of 1.72. Shorter distal length than required in the in-vitro model did not allow the recording of complete pressure recovery. This preliminary data provides reference values for further experimentation both in vitro with pulsatile flow as in physiological conditions, and in vivo.

This content is only available via PDF.
You do not currently have access to this content.