Knowledge of joint kinematics contributes to the understanding of the function of soft tissue restraints, injury mechanisms, and can be used to evaluate surgical repair techniques. (Tibone, McMahon et al. 1998; Karduna, McClure et al. 2001; Abramowitch, Papageorgiou et al. 2003) Previous studies have measured joint kinematics using a variety of non-invasive methods that include: optical tracking, magnetic tracking, and mechanical linkage systems. (Rudins, Laskowski et al. 1997; Apreleva, Hasselman et al. 1998; Gabriel, Wong et al. 2004) These measurement devices report kinematics of rigid bodies with respect their own global coordinate system. However, it is often useful to understand these kinematics in terms of a coordinate system whose axes coincide with the degrees of freedom of each specific joint (anatomical coordinate systems). Once the kinematics are obtained with respect to the global coordinate system of the measurement device, the joint kinematics can be calculated with respect to anatomical coordinate systems if the relationship between the measurement device and the anatomical coordinate systems are known. Although the accuracy of these kinematic measurement devices is provided by the manufacturer, the effect of their accuracy on joint kinematics reported with respect to anatomical coordinate systems must be determined. (Panjabi, Goel et al. 1982; Crisco, Chen et al. 1994) For example, small errors in orientation of the measurement system could lead to large errors in position for an anatomical coordinate system located at some distance away. As researchers report joint kinematics with respect to the anatomical coordinate systems, understanding the errors produced by one’s measurement device with respect to the anatomical coordinate systems is necessary. Further, a great deal of interest exists for studying knee joint kinematics. (Sakane, Livesay et al. 1999; Lephart, Ferris et al. 2002; Ford, Myer et al. 2003) Within our research center our goal is to collect knee joint kinematics of a cadaver and reproduce them with respect to the anatomical coordinate systems using robotic technology. Therefore, the objective of this study was to determine the effect of the accuracy of three measurement devices (optical tracking device-OptoTrak® 3020, magnetic tracking device-Flock of Birds®, instrumented spatial linkage-EnduraTec Corp.) on knee joint kinematics reported with respect to an anatomical coordinate system.

This content is only available via PDF.
You do not currently have access to this content.