The development of anisotropic mechanical properties is critical for the successful function of many soft tissues. Load bearing tissues naturally develop varying degrees of anisotropy, presumably in response to their specific loading environment. For example, the scar tissue that forms after a myocardial infarction is structurally and mechanically anisotropic. To better understand the scar mechanics, we first need to develop structure-function relationships for collagen fiber networks. In order to improve the healing after myocardial infarction, a better understanding of the mechanical anisotropy is necessary. An in vitro collagen gel system can be used to control individual fiber network components and to determine the effect of each component on the mechanical properties of the gel. Previously, we demonstrated the ability to promote two different collagen gel structures, with two different levels of mechanical anisotropy [1]. The goal of the current study was to quantitatively relate the observed mechanical anisotropy to the collagen fiber structure. It was hypothesized that the anisotropy could be explained with a simple structural model, where the gel behavior is derived from the behavior of the individual fibers within the gel (i.e., the properties of the fibers, their orientation, and their level of slack).

This content is only available via PDF.
You do not currently have access to this content.