A generalized thermodynamic model is developed to describe cooling, heating and power generating systems. This model is based on reversible power generation and refrigeration devices with practical, irreversible heat exchanger processes provides valuable information on a system’s performance and allows easy comparisons among different systems at different loading conditions. Using both the first and second laws as well as the carbon dioxide production rate allows one to make a first order system assessment on its energy usage and environment impact. The use of the exergy destruction rate and insuring that its behavior be consistent with that of the first law performance is a important to insure that the thermodynamic system boundaries are correctly and completely defined. The importance of the total thermal load to required power ratio (HLRP) as a scaling parameter is demonstrated. While the reported results confirmed that generalized trends are not possible identify, a number of trends for limited conditions have been identified. The results have shown that a combined vapor compression/absorption refrigeration has higher first law utilization factors and lower carbon dioxide production rate for system with higher refrigeration to total thermal load ratios for all HLRP values. Fuel cell based subsystems outperform engine based subsystems for systems with large refrigeration loads.

This content is only available via PDF.
You do not currently have access to this content.