Punch shear tests have been proven to simulate most of the damage mechanisms observed under ballistic impact. A phenomenological model has been developed to quantify the elastic and absorbed energies as a function of displacement during punch. This model is used to quantify the damage mechanisms of thick-section composites as a function of displacement, and number of pre-defined delamination planes. It has been identified that different damage mechanisms as a function of displacement can be correlated with the load-displacement curve of punch shear tests. Three significant damage mechanisms are identified. Energy absorbed by these damage mechanisms are partitioned and quantified for a thick-section composite made from plain-weave S-2 glass and toughened API epoxy SC15 resin. The effect of pre-defined delamination planes on energy absorption and damage mechanisms are also quantified.

This content is only available via PDF.
You do not currently have access to this content.