It has been experimentally shown that surface texturing (roughening) decreases the effect of intermolecular adhesion forces that are significant in MEMS applications. These forces can hinder normal operation of sensors and actuators as well as micro-engines where they might increase friction, which could be catastrophic. In this paper, a model that predicts the effects of roughness, asymmetry, and flatness on the adhesion, contact, and friction forces in MEMS interfaces is presented. The three key parameters used to characterize the roughness the asymmetry and the flatness of a surface topography are the root-mean-square roughness (RMS), skewness and kurtosis, respectively. It is predicted that surfaces with high RMS, high kurtosis and positive skewness exhibit lower adhesion and static friction coefficient, even at extremely low external normal forces.

This content is only available via PDF.
You do not currently have access to this content.