The low-frequency structure- and fluid-borne noise from elbows excited by fluctuating forces within turbulent fluid flow is investigated. Computational Fluid Dynamics (CFD) Reynolds Averaged Navier Stokes (RANS) analyses of the flow through a piping elbow with a radius to diameter ratio of 2.8 compare favorable to measurements made by previous investigators. The CFD RANS solutions are post-processed to estimate the spectra of the fluctuating wall pressures beneath the turbulent boundary layer (TBL) flow. The CFD RANS solutions are also used to identify regions within the core flow that might excite acoustic modes within the piping fluid. A finite element (FE) model of the piping walls is coupled with a boundary element (BE) model of the interior acoustic fluid and is excited by the fluctuating wall and fluid forces estimated from the CFD RANS solutions. The power transmission through the inlet and discharge ports of the elbow is computed and separated into its structure-borne and fluid-borne components. The influence of both structural and acoustic resonances on the power transmission is evident for both excitation mechanisms. The power transmission curves at the elbow ports may be used as source inputs to transfer matrix models of piping systems that contain elbows.

This content is only available via PDF.
You do not currently have access to this content.