The energy budget in a tubular and a planar type solid oxide fuel cell (SOFC) is studied based on numerical simulation. By solving the discretized governing equations for flow, temperature, and mass fraction of gas species in the fuel cells, the detailed local parameters determining the local electromotive forces are obtained. The energy flows of electrical power, Joule heating, thermal energy from the entropy change of the electrochemical reaction, as well as the chemical reaction heat by reforming and shift reactions are delineated and compared for the two different types of SOFCs.

This content is only available via PDF.
You do not currently have access to this content.