The electromagnetic force results from the interaction between the current flow and the induced magnetic field in the weldment. Comprehensive three-dimensional calculations of current flow and induced magnetic field are needed for accurate determination of the electromagnetic force. In the literature, several simplifying analytical expressions for the electromagnetic force have been suggested and widely used without any critical evaluation of their intrinsic merit, since accurate numerical calculations were difficult in the past because of lack of fast computers. With the advances in computational hardware and software, it is now possible to do relatively complex calculations that were much more difficult to perform just a few decades ago. The objective of the present investigation is to propose a mathematical model to numerically solve the electromagnetic force field in the wildment and determine the effect of commonly used simplifications on the accuracy of the calculated electromagnetic force field and weld pool temperature and velocity fields. A numerical model has been developed to accurately calculate the current density and magnetic flux fields and the resulting electromagnetic force field in three dimensions in the entire weldment. The computed electromagnetic force field was used in a 3-D heat transfer and fluid flow model to calculate the temperature and velocity distributions in the weld pool. The fusion zone geometry was experimentally measured for different current, voltage and arc power distribution. The agreements between the calculated and experimental FZ geometries indicate that the proposed numerical model gives accurate electromagnetic force distribution inside the workpiece.
Skip Nav Destination
ASME 2003 International Mechanical Engineering Congress and Exposition
November 15–21, 2003
Washington, DC, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
0-7918-3716-5
PROCEEDINGS PAPER
Numerical Simulation of Electromagnetically Driven Flow in the Weld Pool During Arc Welding
A. Kumar
Pennsylvania State University, University Park, PA
T. DebRoy
Pennsylvania State University, University Park, PA
Paper No:
IMECE2003-43698, pp. 833-842; 10 pages
Published Online:
May 12, 2008
Citation
Kumar, A, & DebRoy, T. "Numerical Simulation of Electromagnetically Driven Flow in the Weld Pool During Arc Welding." Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Fluids Engineering. Washington, DC, USA. November 15–21, 2003. pp. 833-842. ASME. https://doi.org/10.1115/IMECE2003-43698
Download citation file:
2
Views
Related Proceedings Papers
Related Articles
Soret and Radiation Effects on Transient MHD Free Convection From an Impulsively Started Infinite Vertical Plate
J. Heat Transfer (June,2012)
Reconstruction of Electric Currents in a Fuel Cell by Magnetic Field Measurements
J. Fuel Cell Sci. Technol (May,2009)
Numerical Simulation of Steady Liquid-Metal Flow in the Presence of a Static Magnetic Field
J. Appl. Mech (November,2004)
Related Chapters
Numerical Simulation for Nature Convection Heat Transfer of Liquid Metal Flow with Fusion Magnetic Fields
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Risks from Electromagnetic Sources
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3