The physical condition of rolling element ball bearings can be estimated using analytical and empirical methods or predicted grossly using artificial intelligence techniques such as expert systems, fuzzy logic, and neural network, etc. When the operational condition of a bearing is dynamic and there is a need to determine the actual stresses and tolerances of the bearing concisely, then it is wiser to develop a physics-based model of the bearing using finite element modeling (FEM) techniques. Applying such FEM techniques, one can virtually examine any of the possible mechanical characteristics of different types and sizes of ball bearings operating under different speeds and environmental conditions. Understanding such mechanical characteristics is crucial to accurate fault diagnosis of the bearings in practice. For example, such mechanical characteristics can be digitized or mathematically modeled in order to reduce the computational extent of the analysis as well as serve as a reference look-up table for better and faster fault diagnosis purposes than current practices. It can also be applied to determine the remaining useful life of the ball bearing more precisely. In this paper, we present our technical approach toward the development of a physics-based finite element model of rolling element bearings and provide some examples based on results of this research effort.
Skip Nav Destination
ASME 2003 International Mechanical Engineering Congress and Exposition
November 15–21, 2003
Washington, DC, USA
Conference Sponsors:
- Design Engineering Division
ISBN:
0-7918-3712-2
PROCEEDINGS PAPER
Physics-Based Modeling of Bearing Based on Finite Element Modeling Technique
Amir Shirkhodaie,
Amir Shirkhodaie
Tennessee State University, Nashville, TN
Search for other works by this author on:
John Dubeck
John Dubeck
Tennessee State University, Nashville, TN
Search for other works by this author on:
Amir Shirkhodaie
Tennessee State University, Nashville, TN
John Dubeck
Tennessee State University, Nashville, TN
Paper No:
IMECE2003-42500, pp. 931-938; 8 pages
Published Online:
May 12, 2008
Citation
Shirkhodaie, A, & Dubeck, J. "Physics-Based Modeling of Bearing Based on Finite Element Modeling Technique." Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Design Engineering, Volumes 1 and 2. Washington, DC, USA. November 15–21, 2003. pp. 931-938. ASME. https://doi.org/10.1115/IMECE2003-42500
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Fault Diagnosis of Bearings Using Recurrences and Artificial Intelligence Techniques
ASME J Nondestructive Evaluation (August,2022)
The Negative Information Problem in Mechanical Diagnostics
J. Eng. Gas Turbines Power (April,1997)
An Overview of Artificial Intelligence-Based Methods for Building Energy Systems
J. Sol. Energy Eng (August,2003)
Related Chapters
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Fault Diagnosis based on Rough Set and Dependent Feature Vector for Rolling Element Bearings
International Conference on Control Engineering and Mechanical Design (CEMD 2017)
List of Commercial Codes
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow