The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of microstructural parameters and intermolecular forces at nanoscale level with atomic-resolution characterization. Typically, these microcantilever systems are operated in three open-loop modes; non-contact mode, contact mode, and tapping mode. In order to probe electric, magnetic, and/or atomic forces of a selected sample, the non-contact mode is utilized by moving the cantilever slightly away from the sample surface and oscillating the cantilever at or near its natural resonance frequency. Alternatively, the contact mode acquires sample attributes by monitoring interaction forces while the cantilever tip remains in contact with the target sample. The tapping mode of operation combines qualities of both the contact and non-contact modes by gleaning sample data and oscillating the cantilever tip at or near its natural resonance frequency while allowing the cantilever tip to impact the target sample for a minimal amount of time. Recent research on AFM systems has focused on many fabrication and manufacturing processes at molecular levels due to its tremendous surface microscopic capabilities. This paper provides a review of such recent developments in AFM imaging systems with emphasis on operational modes, microcantilever dynamic modeling and control. Due to the important contributions of AFM systems to manufacturing, this paper also provides a comprehensive review of recent applications of different AFM systems in these important areas.
Skip Nav Destination
Sign In or Register for Account
ASME 2003 International Mechanical Engineering Congress and Exposition
November 15–21, 2003
Washington, DC, USA
Conference Sponsors:
- Design Engineering Division
ISBN:
0-7918-3712-2
PROCEEDINGS PAPER
A Review of Recent Developments in Atomic Force Microscopy Systems With Application to Manufacturing and Biological Processes
Karthik Laxminarayana
,
Karthik Laxminarayana
Clemson University, Clemson, SC
Search for other works by this author on:
Nader Jalili
Nader Jalili
Clemson University, Clemson, SC
Search for other works by this author on:
Karthik Laxminarayana
Clemson University, Clemson, SC
Nader Jalili
Clemson University, Clemson, SC
Paper No:
IMECE2003-41170, pp. 569-576; 8 pages
Published Online:
May 12, 2008
Citation
Laxminarayana, K, & Jalili, N. "A Review of Recent Developments in Atomic Force Microscopy Systems With Application to Manufacturing and Biological Processes." Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Design Engineering, Volumes 1 and 2. Washington, DC, USA. November 15–21, 2003. pp. 569-576. ASME. https://doi.org/10.1115/IMECE2003-41170
Download citation file:
Sign In
3
Views
0
Citations
Related Proceedings Papers
Related Articles
Utilizing Off-Resonance and Dual-Frequency Excitation to Distinguish Attractive and Repulsive Surface Forces in Atomic Force Microscopy
J. Comput. Nonlinear Dynam (July,2011)
Nanoscale Indentation Hardness and Wear Characterization of Hydrogenated Carbon Thin Films
J. Tribol (October,1995)
Nanoscale Indentation Hardness and Wear Characterization of Hydrogenated Carbon Thin Films
J. Tribol (April,1996)
Related Chapters
Experimental Characterization of a Cavitating Orifice
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Introduction and Scope
High Frequency Piezo-Composite Micromachined Ultrasound Transducer Array Technology for Biomedical Imaging
High Resolution ToF-SIMS Imaging of Deuterium Permeation and Cracking in Duplex Stainless Steels
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments