The urinary bladder is a smooth muscle organ whose main functions are to store and to void urine. Since the most important aspect of the storage function of the bladder is to maintain low intravesical pressure in order to protect the upper urinary tract from backflow of urine, the compliance of the bladder wall is one of the key functional paramters to assess the health of this organ. Previously, our laboratory reported, for the first time, the biaxial mechanical properties of bladder wall tissue in the inactive state (in the absence of calcium in the testing bath solution and thus smooth muscle contraction was abolished) (Gloeckner et al. 2002). The bladder in vivo, however, normaly exhibits passive smooth muscle tone during filling and active contraction during voiding. Therefore, in order to completely characterize the bladder tissue mechanical behaviors, it is necessary to examine the load-deformation relationship of the bladder under the passive and active states. In the present study, a novel experimental model was designed to allow collection of biaxial stress-strain data from urinary bladder wall tissue under passive, active and inactive states.

This content is only available via PDF.
You do not currently have access to this content.