Degenerative osteoarthritis is recognized as the consequences of mechanical injuries. The abnormal impact force applied to articular cartilage would result in bone fracture or surface fissuring, and would cause the osteoarthritis [1,2]. The relation among the injury and impact energy was well studied. However, how the external energy attenuated to the internal joint is not carefully studied yet. The porcine knee joint was used as a biomechanical model for the simulation of human knee joint during impact loading. The objective of current study was to find the variation of kinetic characteristics between human and porcine knee joint during axial impact loading. Eight fresh-frozen knee joints from 10 month-old swine and seven cadaver human knee joints were used in the experiment. The mechanical responses such as forces and bending moment of knee joint, and the accelerations of femur was quantitatively analyzed. The results showed that the axial force response between human and porcine joints was similar, however, the anteroposterior shear, flexion bening moment and accelerations of these two joints were different.

This content is only available via PDF.
You do not currently have access to this content.