This paper describes the development of a two-dimensional zone model to predict the throughput and thermal performance of a continuously operated gas-fired furnace heating steel bars to a nominal discharge temperature of 1250°C. Ultimately the model is intended to be a tool which can be used for the design and control of industrial furnaces. Consequently relatively short computing times are necessary and this was achieved by employing an isothermal computational fluid dynamics simulation to estimate the relative mass flows, and hence enthalpy flows to or from adjacent volume zones in the overall model. This simplified approach, which utilises a single “once off” isothermal computation of the flows, was considered to be adequate since isothermal flow models have been used successfully in the past to study the flow related behaviour of combustion systems. The coupling of a multi-zone model with a single “once off” isothermal computation of the flows enables a wide range of furnace design modifications to be studied quickly and easily. To illustrate the potential use of the model in a furnace design application, it was then used to investigate the effects of inclining the burners downwards towards the load as well as those associated with increasing the length of the furnace.

This content is only available via PDF.
You do not currently have access to this content.