Hydrogels have numerous applications in biomedical engineering and biotechnology, such as in cellular and tissue engineering. The transient mechanical behavior of hydrogels is related to its interstitial fluid flow which is governed by hydraulic permeability. The hydraulic permeability of hydrogels and other hydrated soft tissues (e.g., cartilage and intervertebral disc) is deformation dependent [1–3]. Several empirical expressions for deformation-dependent permeability of cartilage have been proposed, in order to quantify the fluid flow within a gel or tissue under mechanical loading [1,2,4]. In this paper, we report a new approach to investigating deformation-dependent permeability of hydrogels. The objective of this study is to find a relationship between hydraulic permeability and tissue porosity (water content) for hydrogels, and in turn derive its deformation-dependent permeability. This study is important for understanding biological responses of cells to interstitial fluid flow in gels or in cartilage under mechanical loading.

This content is only available via PDF.
You do not currently have access to this content.