The intervertebral disc (IVD) is a “hydrostatic load-bearing structure” [1], found between the vertebral bodies of the spine. The IVD is composed of the inner and outer annulus fibrosus and a gelatinous center, the nucleus pulposus. Fluid is the largest component of the IVD. Swelling affects the macroscopic mechanical response of the tissue, as well as the microscopic nutrient and solute transport to the cells of the IVD. Previous studies describing the macroscopic swelling behaviour of the annulus fibrosus have been uniaxial in nature [2,3]. However, the behaviour of the annulus is markedly affected by its geometry [3]. By examining a biaxial section of annulus fibrosus with a portion of the bone attachment present, the structure of the annular test section will be maintained and by inference so should its function [4]. Therefore, the objective of this study was to develop an apparatus to investigate simultaneously both the macroscopic and microscopic swelling behaviour of the annulus fibrosus subjected to realistic biaxial loading. The biaxial loading device should maintain the annulus fibrosus in vivo geometry and environment, monitor stress and control tissue strain, while positioning the tissue in a manner that allows for in situ visualization of the cells.

This content is only available via PDF.
You do not currently have access to this content.