Vacuum Assisted Resin Transfer Molding (VARTM) and Resin Transfer Molding (RTM) are among the most significant and widely used Liquid Composite manufacturing processes. In RTM preformed-reinforcement materials are placed in a mold cavity, which is subsequently closed and infused with resin. RTM numerical simulations have been developed and used for a number of years for gate assessment and optimization purposes. Available simulation packages are capable of describing/predicting flow patterns and fill times in geometrically complex parts manufactured by the resin transfer molding process. Unlike RTM, the VARTM process uses only one sided molds (tool surfaces) where performs are placed and enclosed by a sealed vacuum bag. To improve the delivery of the resin, a distribution media is sometimes used to cover the preform during the injection process. Attempts to extend the usability of the existing RTM algorithms and software packages to the VARTM domain have been made but there are some fundamental differences between the two processes. Most significant of these are 1) the thickness variations in VARTM due to changes in compaction force during resin flow 2) fiber tow saturation, which may be significant in the VARTM process. This paper presents examples on how existing RTM filling simulation codes can be adapted and used to predict flow, thickness of the preform during the filling stage and permeability changes during the VARTM filling process. The results are compared with results obtained from an analytic model as well as with limited experimental results. The similarities and differences between the modeling of RTM and VARTM process are highlighted.

This content is only available via PDF.
You do not currently have access to this content.