Radio-frequency (RF) ablation is a minimally invasive procedure that has the potential for widespread use in hepatic cancer therapy. In the procedure, RF current is applied to the tissue, resulting in the conversion of electrical to heat energy and thus, a rise in temperature, with the goal of eventual tumor necrosis. Potential complications from the procedure include insufficient heating of large tumors, resulting in tumor recursion, as well as excessive thermal damage to healthy tissue. Mathematical models are valuable in predicting the temperature rise within the organ during RF ablation, thereby enhancing the success rate of the procedure. Eventually, models can be used to guide ablation procedures, by predicting the optimal set of operational parameters e.g., catheter probe geometry and placement, given patient-specific information. The present study focuses on the analysis of temperature rise within a reconstructed model of a realistic three-dimensional (3D) section of a porcine liver during RF ablation. This study calculates the effect of blood flow through arteries as well as perfusion through the liver on the time-dependent temperature distribution near the RF ablation probe (Figure 1). For a time duration of 30 min of an ablation procedure, a temperature of about 80°C could be achieved over a diameter of about 4 cm with the present RF probe. As an initial step, the present study includes isotropic hepatic tissue and blood properties.

This content is only available via PDF.
You do not currently have access to this content.