A novel experimental method was developed to measure the rapid transient temperature variations (heating rate > 107 K/s) of porous samples heated by high surface heat fluxes. With a thin film (0.1 μm thick) resistance thermometer of platinum as the temperature sensor and a super-high speed digital oscilloscope (up to 100 MHz) as the data recorder, rapid transient temperature variation in a porous material heated by a microsecond laser pulse of high power density is measured. Experimental results indicate that for high heat transfer cases (q′ > 109 W/m2) with short durations (5 – 20 μs) of heating, non-Fourier heat conduction behaviors appear. The non-Fourier hyperbolic heat conduction model and the traditional Fourier parabolic model are employed to simulate this thermal case respectively and the FDM is used to perform the numerical analysis. The hyperbolic model predicts thermal wave behavior in qualitative agreement with the experimental data.

This content is only available via PDF.
You do not currently have access to this content.