By all measures, the data storage industry is one of the most important components of the Information Technology (IT) revolution. In recent years, many of the emerging technologies rely heavily on energy transport at extremely short time and length scales as a mean to overcome the superparamagnetic limit - a serious impediment to future advancement of storage technology. Additionally, thermally induced failure and reliability issues at the nanoscale are becoming increasingly important due to rapid device miniaturization in data storage applications. Further advances in high-technology data storage systems will be difficult, if not impossible, without rigorous treatment of nanoscale energy transport. This manuscript reviews the thermal design issues and challenges in thermally assisted magnetic disk recording, thermally assisted scanned probe recording, phase change optical data recording, magnetoresistive random access memory (MRAM) and giant magnetoresistive (GMR) heads. Relevant thermally induced failures in GMR heads, write coil, interconnects and MRAM will be discussed as well.

This content is only available via PDF.
You do not currently have access to this content.