We investigate the effect of nonlinearites on a parametrically excited ordinary differential equation whose linearization exhibits the phenomena of coexistence. The differential equation studied governs the stability mode of vibration in an unforced conservative two degree of freedom system used to model the free vibrations of a thin elastica. Using perturbation methods, we show that at parameter values corresponding to coexistence, nonlinear terms can cause the origin to become nonlinearly unstable, even though linear stability analysis predicts the origin to be stable. We also investigate the bifurcations associated with this instability.

This content is only available via PDF.
You do not currently have access to this content.