Dynamic process modeling by the mean of Equivalent Gibbs systems is described here. It allows to model a large number of processes and only requires standard engineering knowledge. This method is issued from thermodynamics of irreversible processes, initiated by I. Prigogine, but applied here to process engineering. First, an Equivalent Gibbs System (EGS) is defined for each component involved in the process. In such system, mass, energy and entropy are linked through Gibbs equation and entropy production can easily be expressed according to fluxes and their related forces. Assuming linear phenomenological laws, phenomenological coefficients can be calculated from common engineering correlations, or evaluated from technical data if available. As an example, a conventional vapor compression chiller is simulated. Three control modes are analyzed on an exergy basis: on/off control with constant or floating condensing pressure, PID control with variable compressor speed.

This content is only available via PDF.
You do not currently have access to this content.