This paper presents an analytical approach for modeling the mechanical-electrical response of annular plate components of space structures containing distributed piezoelectric under static as well as dynamic mechanical or electrical loadings. The analytical approach used in this paper is based on the Kirchhoff plate model. The equations governing the dynamics of the plate, relating the strains in the piezoelectric elements to the strain induced in the system, are derived for annular plate using the partial differential equation. The natural frequencies and mode shapes of the structures were determined by modal analysis. In addition, the harmonic analysis is performed for analyzing the steady-state behavior of the structures subjected to cyclic sinusoidal loads. Numerical simulation results are obtained using finite element approach. Experiments using a thin circular aluminum plate structure with distributed piezoelectric actuators were also conducted to verify the analysis and the computer simulations. Relatively good agreements between the results of these three approaches are observed. Finally, the results show that the model can predict natural frequencies and modes shapes of the plate very accurately.

This content is only available via PDF.
You do not currently have access to this content.