Abstract
This paper deals with a systematic development of theory of powder lubrication with the appropriate formalism based on the fundamentals of fluid mechanics. The theory is capable of predicting flow velocity, fluctuation (pseudo-temperature), powder volume fraction, and slip velocity at the boundaries. An extensive set of parametric simulations covering particle size, surface roughness, volumetric flow, load and speed are performed to gain insight into the performance of a powder lubricated thrust bearing. The results of simulations are compared to the published experimental results. Good agreement between the theory and experiment attests to the capability of the model and its potential for design of powder lubricated bearings.
Volume Subject Area:
Rheology and Fluid Mechanics of Nonlinear Materials
This content is only available via PDF.
Copyright © 2001 by The American Society of Mechanical Engineers
You do not currently have access to this content.