Abstract
Measurements of power consumption in stirred vessel flows powered by a Rushton and an hyperboloid impeller were carried out. The fluids were aqueous solutions of tylose, CMC and xanthan gum at weight concentrations ranging from 0.1% to 0.6% and also included Newtonian fluids.
For the Rushton turbine flows the addition of polymer increased the Newton number by about 13–20% at Reynolds numbers in the range 1,000–3,000, whereas with the hyperboloid impeller the Newton number decreased about 13%. This decrease was especially noticeable for the CMC solutions and was absent from the 0.2% tylose solution flow.
Concentrated aqueous solutions of CMC (5.2%) and XG (3.6%) were also produced to determine the characteristic impeller parameter k for the hyperboloid, following the procedure of Metzner and Otto (1957) which was found to be 48 ±16.