Abstract

The effects of specimen geometry size on the behavior of 63Sn-37Pb solder are investigated both experimentally in the laboratory and analytically with finite-element simulations. The simulations are achieved by developing a constitutive model for solder which couples viscoplasticity with a unified damage theory. The unified damage theory is characterized by a damage surface in strain space which separates fatigue damage from inelastic damage. The damage evolution equations are derived within the framework of irreversible thermodynamics. A series of uniaxial tension, tensile creep, and strain-controlled fatigue experiments are performed to obtain material parameters for the solder damage model. The solder damage model is then implemented into a finite element code and used to simulate a uniaxial tension test on a miniature specimen and on a standard ASTM specimen (ASTM standards, 1999). Predictions from these simulations are then compared with each other and with experimental results in order to examine specimen size effects.

This content is only available via PDF.
You do not currently have access to this content.