Abstract

This paper describes use of a Proton Exchange Membrane (PEM) fuel cell system model for automotive applications in a fuel cell system/battery hybrid configuration. The fuel cell system model has been integrated into a vehicle performance simulator that determines fuel economy and allows consideration of control strategies. The simulator is used to explore relevant regions of the fuel cell-powered hybrid electric vehicle design space by conducting simulations using two simple supervisory-control strategies: thermostatic control and proportional control. During the simulations power provided by the battery and fuel cell system and operational limits on battery state of charge and fuel cell system current density are varied while maintaining minimum component sizing to meet vehicle performance criteria. Analysis of results from these simulations provides component power sizing and limits of operation suitable for development of a more advanced supervisory vehicle control strategy for a fuel cell vehicle.

This content is only available via PDF.
You do not currently have access to this content.