Abstract
Alternative methods have been proposed to solve the redundant problem of spinal active-passive load distribution. Due to the shortcomings in existing reduction, optimisation and EMG-driven models, and combination thereof, a novel kinematics-based approach is introduced that utilises the spinal passive-active synergy. Our recent studies demonstrate that, for a given task, the posture may be so adjusted as to yield an optimal load configuration requiring minimum muscle exertion [1]. In the current study, a solution technique for the redundant spinal system is described and applied to the analysis of a lumbar spine in an optimal posture obtained by varying the lordosis and pelvic tilt under a total of 2800N compression. The forces in lumbar muscles are subsequently computed for this optimal posture.