Abstract

Application of fracture mechanics to bone was undertaken to provide a better estimate of bone’s resistance to fracture as traditional strength of materials tests failed to provide a realistic measure due to the presence of inherent flaws and fatigue microcracks in bone (1). Consequently, over the last decade a number of fracture mechanics studies have characterized bone’s resistance to fracture in terms of critical stress intensity factor and critical strain energy release rate measured at the onset of a fracture crack (1–3). These studies, although useful, provide a limited insight into fracture behavior of bone as, unlike classical brittle materials, bone is a microcracking solid that derives its resistance to fracture during the process of crack propagation from microfracture mechanisms occurring behind the advancing crack front (4). More significantly age and disease-related alterations in the content and arrangement of bone, that cause reduced post-yield properties, are unlikely to be realized from initiation tests as such tests are limited to events at yielding.

This content is only available via PDF.
You do not currently have access to this content.