Abstract

Unconventional nonlinear models such as nonlinear ARMAX, Takagi-Sugeno fuzzy models, global linearizations, and linear hybrid systems are, at the highest level of abstraction, a sort of quasi-linear models, namely, Polytopic Linear Differential Inclusions (PLDIs). At present, quadratic stability has enabled, mainly via linear matrix inequalities, the analysis and design of a nonlinear system from the vertex matrices of its PLDI model. Proving stability by a globally quadratic Lyapunov function, however, entails conservatism. This paper proposes a less conservative framework by using piecewise-quadratic generalized Lyapunov functions. Further manipulation of the problem within such framework yields a set of bilinear rather than linear matrix inequalities.

This content is only available via PDF.
You do not currently have access to this content.