In a previous paper, we discussed the characteristics of a “meaningful” average of a collection of dynamical systems, and introduced as well as contructed a “meaningful” average that is not usually what is meant by an “ensemble” average. We also addressed the associated issue of the existence and construction of such an average for a class of interconnected, linear, time invariant dynamical systems. In this paper, we consider the issue of the construction of a meaningful average for a collection of a class of nonlinear dynamical systems. The construction of the meaningful average will involve integrating a nonlinear differential equation, of the same order as that of any member of the systems in the collection. Such an “average” dynamical system is not only attractive from a computational perspective, but also represents the macroscopic behavior of the interconnected dynamical systems. An average dynamical system can be used in the analysis and design of hierarchical systems.

This content is only available via PDF.
You do not currently have access to this content.