This paper presents a micro-mechanistic approach for modeling fatigue damage initiation due to cyclic creep in eutectic Pb-Sn solder. Damage mechanics due to cyclic creep is modeled with void nucleation, void growth and void coalescence model based on micro-structural stress fields. Micro-structural stress states are estimated under viscoplastic phenomena like grain boundary sliding and its blocking at 2nd phase particles, and diffusional creep relaxation. A conceptual framework is provided to quantify the creep-fatigue damage due to thermo-mechanical cycling. Some parametric studies are provided to better illustrate the utility of the developed model.

This content is only available via PDF.
You do not currently have access to this content.