This paper presents the result of using an experimental spatial matrix identification method to predict the dynamics of a frame structure under a different boundary condition. The single-input-multiple-output frequency response functions of the test structure under the free-free boundary condition are measured by hammer testing. Using the FRFs, a set of spatial matrices is determined to represent its structural dynamic characteristics by the method. Then, using the identified spatial matrices, the dynamic characteristics of the test structure under the boundary condition of clamping 4 points is predicted. The prediction is practically accurate. The result of the prediction demonstrates that the spatial matrices identified by the method can be used for structural modification and substructure synthesis in the field of computer aided mechanical engineering.

This content is only available via PDF.
You do not currently have access to this content.