Foam core sandwich composites have been fabricated using innovative co-injection resin infusion technique and tested under in-plane compression. The sandwich construction consisted of Klegcell foam as core materials and S2-Glass/Vinyl ester composites as face sheets. Tests were conducted with various foam densities and also with implanted delamination between the core and the face sheet. The intent was to investigate the effect of core density, and the effect of core-skin debonds on the overall buckling behavior of the sandwich. Analytical and finite element calculations were also performed to augment the experimental observations. It has been observed that core density has direct influence on the global buckling of the sandwich panel, while embedded delamination seem to have minimal effect on both global as well as local buckling. Detailed description of the experimental work, finite element modeling and analytical calculations are presented in this paper.

This content is only available via PDF.
You do not currently have access to this content.