Fixture design is a critical step in machining. An important aspect of fixture design is the optimization of the fixture, the primary objective being the minimization of workpiece deflection by suitably varying the layout of fixture elements and the clamping forces. Previous methods for fixture design optimization have treated fixture layout and clamping force optimization independently and/or used nonlinear programming methods that yield sub-optimal solutions. This paper deals with application of the genetic algorithm (GA) for fixture layout and clamping force optimization for a compliant workpiece. An iterative algorithm that minimizes the workpiece elastic deformation for the entire cutting process by alternatively varying the fixture layout and clamping force is proposed. It is shown via an example of milling fixture design that this algorithm yields a design that is superior to the result obtained from either fixture layout or clamping force optimization alone.

This content is only available via PDF.
You do not currently have access to this content.