The dynamics of a shallow arch subjected to small random external and parametric excitation is invegistated in this work. We develop rigorous methods to replace, in some limiting regime, the original higher dimensional system of equations by a simpler, constructive and rational approximation – a low-dimensional model of the dynamical system. To this end, we study the equations as a random perturbation of a two-dimensional Hamiltonian system. We achieve the model-reduction through stochastic averaging and the reduced Markov process takes its values on a graph with certain glueing conditions at the vertex of the graph. Examination of the reduced Markov process on the graph yields many important results such as mean exit time, stationary probability density function.

This content is only available via PDF.
You do not currently have access to this content.