Abstract
A finite element/boundary element design tool is used to perform a structural acoustic optimization on an eight-ply graphite epoxy cylindrical shell. The shell is subject to two external monopole sources vibrating at a single frequency. The goal of the optimization is the minimization of the sum of the squared pressure amplitudes within the enclosed acoustic cavity. The ply angles serve as the design variables in optimization. The optimal design was obtained after 15 iterations with a 2 dB reduction in the average interior sound pressure level. The ply angle orientation shifted from an initially symmetric lay-up to an unsymmetric lay-up in the final design.
Volume Subject Area:
Computational Acoustics
This content is only available via PDF.
Copyright © 2000 by ASME
You do not currently have access to this content.